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Structure formation in ΛCDM

ESA/Planck

� CMB: T−T̄
T̄
∼ 10−5

� Today: local density contrast
ρ−ρ̄
ρ̄ � 1

� Growth of perturbations
linear until ρ−ρ̄ρ̄ . 1

� N -body simulations follow
gravitational collapse in the
non-linear regime

� Simulated structure matches
observations on large scales
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Challenges on small scales

Baryonic physics

DM particle physics
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Challenges on small scales

Bullock & Boylan-Kolchin 2017

� Rotation curves of some dwarf galaxies rise slower than
expected

� Their host DM haloes appear to be cored instead of cuspy
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Scope of this presentation

� Inner density profile of simulated CDM haloes has a universal,
cuspy shape

� Measured rotation curves of dwarf galaxies suggest DM haloes
with constant density cores

� Theory and observation need to be reconciled by core
formation mechanisms

� Different core formation mechanisms must lead to (nearly)
identical, i.e. degenerate final halo density profiles

� The timescale of the cusp-core transformation is different for
different feasible mechanisms

� Key motivation: Can we use this difference to break the
degeneracy between core formation mechanisms?
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Core formation mechanisms - Self-interacting DM

Vogelsberger et al. 2012

� Elastic scattering between DM particles →heat exchange
� Scattering rate regulated by momentum transfer cross section:

Pij ∝ ρi
σT
mχ

vij∆ti,
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Core formation mechanisms - SN Feedback
� Bursty star formation causes

impulsive SNF
� Core formation if central potential

is dominated by baryons

−5 0
log(n[cm−3] )

1

2

3

4

5

6

lo
g(

T
[K

]
)

star
form

ation

hot

cold

ISM structure

bursty SF

10−1 100 101

r[kpc]

106

107

108

109

1010

ρ
[M
�

kp
c−

3
]

nth = 0.1 cm−3

nth = 1 cm−3

nth = 10 cm−3

nth = 100 cm−3



7/23

Analytic models for SNF

� We can model the impact of mass loss without running full
hydrodynamical simulations

� One-component effective model for SNF in DM only
simulations:
I Periodically add and remove central potential
I Potential and injection scheme define model

� Two-component effective model for SNF in DM only
simulations:
I External potential mimicking a galaxy
I Scheme to model the formation of “superbubbles”
I Distribution of “superbubbles” determined by external potential

� Free parameters of two-component model:
I Galaxy type and galaxy size
I Energy injection time
I Total amount of injected energy
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Adiabatic and impulsive evolution
� In static potentials with spherical symmetry

H(x,p)→ H(Jr, L, Lz),

where the actions are conserved quantities.

� In time-dependent spherical potentials, the evolution of a
tracer particle’s radial action depends on how fast the
potential changes:

I In adiabatically evolving potentials (evolution slow compared
with typical orbital times), actions are conserved

I In impulsively evolving potentials, actions of tracers change
discontinuously (and their energies change by an explicitly
phase-dependent amount)

Key idea
Adiabatic /impulsive core formation mechanisms may affect the
kinematic properties of stars in distinct ways.
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Core formation through SIDM and SNF
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Burger & Zavala 2019

� 107 DM particles, M200 ∼ 1.5× 1010M�, c200 = 15

� One-component model for SNF, Probabilistic model for SIDM
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Orbital families and phase mixing
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Evolution of circular velocity curves

Burger & Zavala 2021

� Two-component model, initially Mh = 1010h−1M� c200 = 13

� Galaxy size, injected energy and injection time affect core size
� Similar picture for Plummer sphere and disk
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Orbital families and symmetry: Plummer sphere
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Orbital families and symmetry: Flat disk
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Hydrodynamic simulations of an isolated dwarf

� Set up ICs of an isolated SMC-analog in a live DM halo
I Mh ∼ 1.6× 1010M� c200 ∼ 17
I Gas disk, stellar disk & stellar bulge ∼ 5% of halo mass
I R? = 0.7 kpc Rgas = 2.1 kpc
I Gas with Z = Z�, T = 104 K, and in hydrostatic equilibrium
I Particle / gas cell mass ∼ 103 M�

� Isolated galaxy evolved using SMUGGLE, which models
I Cooling and heating of gas
I Star formation and stellar evolution and feedback

� Simulations include elastic scatters between DM particles
� Systematically vary nth and σT /mχ in suite of 16 simulations
� Goal: break degeneracy between adiabatically and impulsively

formed cores with kinematic properties of stars / gas
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Degeneracy of DM density profiles
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Different combinations of nth and σT /mχ can produce cores of a
similar size!
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Breaking the degeneracy

pure SIDM

pure CDM CDM + SNF 

pure SIDM

pure CDM CDM + SNF

Burger et al. 2021

� Adiabatic core formation causes migration of stellar orbits

� Impulsive SNF can lead to an increase in random gas motion
� Impulsive SNF can cause large stellar age gradients
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Breaking the degeneracy
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� Adiabatic core formation causes migration of stellar orbits
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CDM runs – low vs high star formation threshold

Burger et al., in prep.

� Compare CDM runs with nth = 0.1 cm−3 and nth = 100 cm−3

� Supperbubble created by impulsive SNF is apparent in the
edge-on projection of the gas
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Phase space distribution of mono-age stars
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Explaining the shell feature
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� Stars of similar age and metallicity form orbital families
� Look at 150 most metal-rich stars
� Impulsive SNF causes discontinuous energy increase
� High-energy particles make up the shell →phase mixing
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Significance of the shell feature
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� Use smooth distribution as
target distribution for
random sampling

� Determine likelihood of
overdensity being a chance
occurrence

� Feature has local (global)
significance of > 5σ (3.3σ)
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LOS projection of phase space shell

0 1 2 3 4 5
|x|[kpc]

−100

−50

0

50

100

v y
[k

m
s−

1
]

smooth
rotation

smooth SF nth = 0.1 cm−3

0.015

0.018

0.020

0.022

0.025

0.028

0.030

Z
(m

et
al

lic
it

y)

0 1 2 3 4 5
|x|[kpc]

−100

−50

0

50

100

v y
[k

m
s−

1
]

clustered
high-Z stars

bursty SF nth = 100 cm−3

0.015

0.018

0.020

0.022

0.025

0.028

0.030

Z
(m

et
al

lic
it

y)

0 1 2 3 4 5
|x|[kpc]

−100

−50

0

50

100

v y
[k

m
s−

1
]

smooth
rotation

smooth SF nth = 0.1 cm−3

0.00

0.25

0.50

0.75

1.00

1.25

1.50

10
8
M
�

kp
c−

1
km
−

1
s

0 1 2 3 4 5
|x|[kpc]

−100

−50

0

50

100

v y
[k

m
s−

1
]

clustered
high-Z stars

bursty SF nth = 100 cm−3

0.00

0.50

1.00

1.50

2.00

2.50

10
8
M
�

kp
c−

1
km
−

1
s

Burger et al., in prep.



22/23

Conclusion and outlook

� Both SIDM and SNF are viable cusp-core transformation
mechanisms at the scale of dwarf galaxies

� They can create nearly indistinguishable DM cores
� This degeneracy is broken by the kinematic properties of stars

and gas
� SIDM-induced core formation causes an adiabatic expansion of

central stars, while impulsive SNF creates large age gradients
� Shell-like features associated with early-stage phase mixing

appear in the phase space distribution of mono-age stars in the
aftermath of impulsive SNF events

� We need cosmological simulations to further quantify the
signal(s) and take environmental effects into account

� Required observational data is likely available 5-10 years down
the road (e.g. Roman Space Telescope)
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signal(s) and take environmental effects into account

� Required observational data is likely available 5-10 years down
the road (e.g. Roman Space Telescope)
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Plummer profiles
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Action condition in Jr-L space
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n− T diagram and Jeans mass
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BK mass accretion history
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SMUGGLE rotation curves
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Evidence for dark matter

ESA/Planck

� Angular power spectrum of the CMB temperature fluctuations

� The inner kinematics of observed galaxies and galaxy clusters
� There is also strong evidence for DM from cosmic structure

formation
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Radial actions in evolving spherical potentials

� In static potentials with spherical symmetry

H(x,p)→ H(Jr, L, Lz),

where the actions are conserved quantities
� In mildly time-dependent potentials, the actions of kinematic

tracers (nearly massless particles) evolve as

Jr = Jr′ + (r · ṙ)
Ṙ

R

P (E,L, t)

2π
≡ Jr′ + ∆Jr

� Ṙ/R depends on the rate of change in both amplitude and
shape of the potential

� P (E,L, t)/2π is the reduced radial period
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Radial actions of tracer particles

Φ(r, t) = −GM0(1 + εt)
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� The first-order approximation is accurate if the potentials
evolves slowly relative to the tracer’s orbital time

� A diffusion theory with drift C̃ ∼ 〈∆Jr〉 and diffusion
D̃ ∼

〈
∆2
Jr

〉
accurately predicts the evolution of radial action

distributions for D̃ � J2
r
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