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Structure formation in ACDM

m CMB: 2T ~ 1070

B Today: local density contrast
EE>1

B Growth of perturbations
linear until L;E <1

B N-body simulations follow
gravitational collapse in the
non-linear regime

B Simulated structure matches
observations on large scales
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Challenges on small scales

Baryonic physics
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Challenges on small scales
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Bullock & Boylan-Kolchin 2017
B Rotation curves of some dwarf galaxies rise slower than
expected

o B Their host DM haloes appear to be cored instead of cuspy
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Scope of this presentation

Inner density profile of simulated CDM haloes has a universal,
cuspy shape

Measured rotation curves of dwarf galaxies suggest DM haloes
with constant density cores

Theory and observation need to be reconciled by core
formation mechanisms

Different core formation mechanisms must lead to (nearly)
identical, i.e. degenerate final halo density profiles

The timescale of the cusp-core transformation is different for
different feasible mechanisms

Key motivation: Can we use this difference to break the
degeneracy between core formation mechanisms?



Core formatlon mechanisms - Self-interacting DM
T SIDM UT/mX—IO cm2g_1

LMy = 10"Mg, — 10°M,, -

ek

'"Convergence
Lover five orders
of magnitude in
“~halo mass

L

. 1 L
1197 10" 10° 10"
r/a

Vogelsberger et al. 2012

B Elastic scattering between DM particles —heat exchange

B Scattering rate regulated by momentum transfer cross section:
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Core formation mechanisms - SN Feedback
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Analytic models for SNF

B We can model the impact of mass loss without running full
hydrodynamical simulations
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Analytic models for SNF

We can model the impact of mass loss without running full
hydrodynamical simulations
One-component effective model for SNF in DM only
simulations:

» Periodically add and remove central potential

» Potential and injection scheme define model
Two-component effective model for SNF in DM only
simulations:

» External potential mimicking a galaxy
» Scheme to model the formation of “superbubbles”
» Distribution of “superbubbles” determined by external potential

Free parameters of two-component model:

» Galaxy type and galaxy size
» Energy injection time
» Total amount of injected energy



Adiabatic and impulsive evolution

B In static potentials with spherical symmetry
H(x,p) = H(J;, L, L),

where the actions are conserved quantities.
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Adiabatic and impulsive evolution

B |n static potentials with spherical symmetry
H(x,p) = H(Jy,L, L),

where the actions are conserved quantities.

B |n time-dependent spherical potentials, the evolution of a
tracer particle's radial action depends on how fast the
potential changes:

» In adiabatically evolving potentials (evolution slow compared
with typical orbital times), actions are conserved

» In impulsively evolving potentials, actions of tracers change
discontinuously (and their energies change by an explicitly
phase-dependent amount)

Adiabatic /impulsive core formation mechanisms may affect the
o kinematic properties of stars in distinct ways.
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Core formation through SIDM and SNF
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Burger & Zavala 2019
M 107 DM particles, Mgy ~ 1.5 x 10'°°M), co00 = 15
B One-component model for SNF, Probabilistic model for SIDM
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Evolution of circular velocity curves

External Plummer Potential
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Burger & Zavala 2021
B Two-component model, initially M, = 101957 M, cao = 13
B Galaxy size, injected energy and injection time affect core size
wuangnlo @ Similar picture for Plummer sphere and disk
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Orbital families and symmetry: Plummer sphere
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Orbital families and symmetry: Flat disk
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Hydrodynamic simulations of an isolated dwarf

B Set up ICs of an isolated SMC-analog in a live DM halo
» M ~ 1.6 x 101°Mg ca00 ~ 17
» Gas disk, stellar disk & stellar bulge ~ 5% of halo mass
» R, =0.7Tkpc Rgas = 2.1kpe
» Gas with Z = Z,, T = 10* K, and in hydrostatic equilibrium
» Particle / gas cell mass ~ 103 M,
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Hydrodynamic simulations of an isolated dwarf

B Set up ICs of an isolated SMC-analog in a live DM halo
» M ~ 1.6 x 101°Mg ca00 ~ 17
» Gas disk, stellar disk & stellar bulge ~ 5% of halo mass
» R, =0.7Tkpc Rgas = 2.1kpe
» Gas with Z = Z,, T = 10* K, and in hydrostatic equilibrium
» Particle / gas cell mass ~ 103 M,
B Isolated galaxy evolved using SMUGGLE, which models
» Cooling and heating of gas
» Star formation and stellar evolution and feedback
B Simulations include elastic scatters between DM particles
B Systematically vary ny, and o7 /m, in suite of 16 simulations

B Goal: break degeneracy between adiabatically and impulsively
formed cores with kinematic properties of stars / gas
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Degeneracy of DM density profiles
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Different combinations of n, and o7 /m,, can produce cores of a

similar size!
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Breaking the degeneracy
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B Adiabatic core formation causes migration of stellar orbits
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Breaking the degeneracy
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B Adiabatic core formation causes migration of stellar orbits

B Impulsive SNF can lead to an increase in random gas motion
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Breaking the degeneracy
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B Adiabatic core formation causes migration of stellar orbits

B Impulsive SNF can lead to an increase in random gas motion

B Impulsive SNF can cause large stellar age gradients
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CDM runs — low vs high star formation threshold

t=3.00 Gyr t=3.00 Gyr

t=3.00 Gyr t=3.00 Gyr

Burger et al., in prep.

B Compare CDM runs with ng, = 0.1cm™2 and ny, = 100cm ™3

B Supperbubble created by impulsive SNF is apparent in the
ok edge-on projection of the gas
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Phase space distribution of mono-age stars
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Explaining the shell feature

: CDM : : 100 ‘ ‘
0.0008} 3 7w =01lem™® | 0.8CyT < tyge < 0.9Cyr
- — 100 cm=3 7> 0.02
3 na =100em E > 217000 ks~
0.0006 1
T
00004 1=
0.0002 y
| | ] I | | |
0-0000 20000 18000 —16000  —14000 —100g 1 2 3
Elkm?s~?]

Rikpe]

Burger et al., in prep.
B Stars of similar age and metallicity form orbital families

B Look at 150 most metal-rich stars

B Impulsive SNF causes discontinuous energy increase

B High-energy particles make up the shell —phase mixing



Significance of the shell feature
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LOS projection of phase space shell
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Conclusion and outlook
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Conclusion and outlook

B Both SIDM and SNF are viable cusp-core transformation
mechanisms at the scale of dwarf galaxies

B They can create nearly indistinguishable DM cores

B This degeneracy is broken by the kinematic properties of stars
and gas

B SIDM-induced core formation causes an adiabatic expansion of
central stars, while impulsive SNF creates large age gradients

B Shell-like features associated with early-stage phase mixing
appear in the phase space distribution of mono-age stars in the
aftermath of impulsive SNF events

B We need cosmological simulations to further quantify the
signal(s) and take environmental effects into account

B Required observational data is likely available 5-10 years down
weana il the road (e.g. Roman Space Telescope)
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Plummer profiles
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Action condition in J,-L space
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n — T" diagram and Jeans mass
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SMUGGLE rotation curves
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Evidence for dark matter
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Evidence for dark matter

Observations
. from starlight
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B Angular power spectrum of the CMB temperature fluctuations
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Evidence for dark matter

Observations
. from starlight

Velocity
(km s-1)

Expected from
the visible disk

10,000 - 20,000 30,000 40,000

Distance (light years)

B Angular power spectrum of the CMB temperature fluctuations
B The inner kinematics of observed galaxies and galaxy clusters

B There is also strong evidence for DM from cosmic structure
Iceland [}[&J formatlon
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Radial actions in evolving spherical potentials

B In static potentials with spherical symmetry
H(x,p) — H(J,,L, L),

where the actions are conserved quantities

B In mildly time-dependent potentials, the actions of kinematic
tracers (nearly massless particles) evolve as

_ . RP(E,L,t)

JT—JT/+(I"I')ET

B R/R depends on the rate of change in both amplitude and
shape of the potential

B P(E,L,t)/2n is the reduced radial period

Iceland EP[&J
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Radial actions of tracer particles

& = 50km% 2

11
— exact

bty CMol1+ ) o -

r é 0 === de-coupled
-1 _ ’

e " =30Gyr 0.025 ™~ T
= 0.000 \ L \

—0.025 Mt :
0 1 2 3

t[Gyr]
Burger et al. 2020
B The first-order approximation is accurate if the potentials
evolves slowly relative to the tracer's orbital time

Iceland EP[&J

Liechtenstein
Norway grants



Radial actions of tracer particles

10t

= 3Gyr
mm VD<01J, R
_ 10! 0.04 —— measured
O\ bp<J. v S e initial
— | mm—»luu‘m’ 0.03 i . ===+ convolved
forbidden =
& = 0.02
w -
0.01
-2
10 0.00 i T
10% 0 5 10 15 20 25
J, [kpckms™!] Jy[kpekms™]

Burger et al. 2020

B The first-order approximation is accurate if the potentials
evolves slowly relative to the tracer's orbital time
B A diffusion theory with drift C' ~ (A, ) and diffusion
D ~ (A2 ) accurately predicts the evolution of radial action
o distributions for D < J2
Iceland
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Radial actions of tracer particles

0.008
mm VD<01J, — t=0Gyr
D<J 10 ===t =0.6Gyr
&N i 0.006 — = t=15Cy
o = non-linear [ |z L L t =3Gyr
i forbidden =
o = 0.004
2 =
w
0.002
-2
10 0.000 .
10% 100 200 300
J, [kpckms™!] Jo[kpekms™!]

Burger et al. 2020

B The first-order approximation is accurate if the potentials
evolves slowly relative to the tracer's orbital time

B A diffusion theory with drift C ~ (Ay.) and diffusion
D ~ (A3 ) accurately predicts the evolution of radial action
o distributions for D < .J2, but fails for D > .J?
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