### Early Universe filled with ultra-light primordial black holes

#### Rome Samanta, MSCA-IF, FZU CEICO, Institute of Physics of the Czech Academy of Sciences, CZ

Research related to this presentation is supported by MSCA-Individual Fellowship IV FZU - CZ.02.2.69/0.0/0.0/20 079/0017754 and European Structural and Investment Fund and the Czech Ministry of Education, Youth and Sports.

Lightness @ Prague, 16<sup>th</sup> Sept, 2021



EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education



### Subject of this talk:

### Primordial black holes with mass < 10<sup>9</sup> g evaporates before BBN via Hawking radiation Features:

- 1) The initial energy density at formation is not constrained unlike the PBH as Dark matter.
- 2) Can produce Dark matter, Dark radiation and heavy particle responsible for baryogenesis.
- 3) At the same time opens up a pathway to probe very Early Universe Physics with Gravitational waves broadly in two ways
  - A) Either generating gravitational waves from their own dynamics or
  - **B)** Affect the spectrum of GWs from other external sources



Gravitational waves, Amplitude ~ 
$$[VEV_{U(1)}]^2$$

Opens up the possibilities to probe very High scale physics at GW detectors

**State-of-the-art constraint on PBH masses** 

Free parameter:  $\beta = \rho_{BH} / \rho_{rad}$ 



**PBH Mass** 

### Ultralight PBH dynamics (only non-rotating)

# Consider formation in the radiation domination $M_{BH} = \gamma \frac{4}{2} \pi (H_{Bf}^{-1})^3 \rho_{Bf}$ with $\rho_{Bf} = \frac{3H_{Bf}^2 M_{Pl}^2}{8\pi}, \quad H_{Bf} = \frac{1}{2t_{Pf}}.$ Mass: Mass loss: $-\frac{dM_{BH}}{dt} = f_{ev}(4\pi r_{BH}^2)\frac{dE}{dt},$ $\frac{dM_{BH}}{dt} = -\frac{\mathcal{G}g_{*B}(T_{BH})}{30720\pi} \frac{M_{Pl}^4}{M_{PH}^2},$ Life-time: $\tau = \int_{t_{ev}}^{t_{ev}} dt = -\int_{M_{ev}}^{0} dM_{BH} \frac{30720\pi M_{BH}^2}{\mathcal{G}_{q_{*B}}(T_{BH})M_{Pl}^4} = \frac{10240\pi M_{BH}^3}{\mathcal{G}_{q_{*B}}(T_{BH})M_{Pl}^4}.$ $T_{ev} = \left(\frac{45M_{Pl}^2}{16\pi^3 a_{e}(T_{e})\tau^2}\right)^{1/4}.$ Evaporation

#### Formation temperature

$$T_{Bf} = \left(\frac{45\gamma^2}{16\pi^3 g_*(T_{Bf})}\right)^{1/4} \left(\frac{M_{Pl}}{M_{BH}}\right)^{1/2} M_{Pl}.$$





# Particle production

Differential number of particles

$$dN = dE/3T_{BH} = \frac{M_{Pl}^2}{24\pi} \frac{1}{T_{BH}^3} dT_{BH}, \qquad \text{Where ,} \qquad dE \equiv -d(M_{BH}) = \frac{M_{Pl}^2}{8\pi} \frac{dT_{BH}}{T_{BH}^2}$$

Number of `X' particle by a black hole



The `X' could be a DM

### Dark Matter production

Observed Dark Matter relic:  $\Omega_{DM}h^2=0.12 \approx n_{BH} \times N_{DM} \times M_{DM}/\rho c$ 

$$n_{BH} = \frac{f_{BH}}{M_{BH}} \left( T_{ev} \right) = \frac{M_{PI}^2}{6\pi T^2 M_{BH}}$$

For MOM < TBH one gets Mom < 3x107 (MBH /12 For MOM > TBH one gets MOM > 4.5x18 (MPR ) 5/2 2 The equality Sign => - 20M M= 0.12

# Super heavy Dark Matter (SHDM) from PBH



# An idea to probe SHDM with GW

Samanta & Urban, upcoming

### Keep in mind that we are dealing with a particle DM candidate

This probably motivates: The mass MDM is generated by a symmetry breaking mechanism ! Consider a simple gauge symmetry is U(1) that protects vanishing DM mass.



U(1) breaking=> DM mass + cosmic strings (gravitational)

#### High scale physics: Motivation for cosmic strings, e.g., PTAS

## Millisecond pulsars (spins ~100 times a second) produce most stable pulses and are used by the PTAs

When a gravitational wave (a disturbance) passes between the earth and pulsar system, the time of arrival of the signal from the pulsars changes. This induces a change in frequency due to the gravitational wave.

Time residual: 
$$R(t) = -\int_0^t \frac{\delta v}{v} dt$$

Pulsar-Timing-Arrays typically work with high amplitude GWs => Could be a Detector of High Scale Symmetry breaking theories



#### Recent report of SGWB at NANOGrav

### **Cosmic strings**

Cosmological phase transition leads to spontaneous breaking of abelian symmetry This is associated with topological defect like cosmic strings (CS). (T. Kibble, J. Phys. A 9 (1976)).

They can form close loop and shrink via GW emission.

Still there are debates whether they loose energy via particle radiation or GW emission.

Recent numerical simulation based Nambu-Goto action shows that the dominant emission is GW if the broken symmetry is a local gauge symmetry. (Pillado et al, PRD 2011, T. Vachaspati et al ,PRD, C. Ringeval et al JCAP).

Radiate energy at constant  $\frac{dE}{dt} = -\Gamma G \mu^2$ , Length dynamics  $l(t) = \alpha t_i - \Gamma G \mu (t - t_i)$ rate

G: Newton constant ,  $\mu$ : string tension (~Square of symmetry breaking scale),  $\alpha$ : loop size (max: 0.1)

# Gravitational waves power spectrum and loop number density

 $\Omega_{GW}(t_0, f) = \frac{f}{\rho_c} \frac{d\rho_{GW}}{df} = \sum_k \Omega_{GW}^{(k)}(t_0, f).$ Amplitude/energy density  $\frac{d\rho_{GW}^{(k)}}{df} = \int_{t_0}^{t_0} \left[ \frac{a(\tilde{t})}{a(t_0)} \right]^4 P_{GW}(\tilde{t}, f_k) \frac{dF}{df} d\tilde{t},$ Differential energy density Power spectrum  $P_{GW}(\tilde{t}, f_k) = \frac{2kG\mu^2\Gamma_k}{f_k^2}n(\tilde{t}, f_k) = \frac{2kG\mu^2\Gamma_k}{f^2\left[\frac{a(t_0)}{a(\tilde{t})}\right]^2}n\left(\tilde{t}, \frac{2k}{f}\left[\frac{a(\tilde{t})}{a(t_0)}\right]\right).$   $\mu^2/M_{\text{pl}}$ Amplitude/energy density  $\Omega_{GW}^{(k)}(t_0, f) = \frac{2kG\mu^2\Gamma_k}{f\rho_c} \int_{t_{orc}}^{t_0} \left[\frac{a(\tilde{t})}{a(t_0)}\right]^5 n\left(\tilde{t}, \frac{2k}{f}\left[\frac{a(\tilde{t})}{a(t_0)}\right]\right) d\tilde{t}.$ Loop number density

Numerical simulation: 
$$n(\tilde{t}, l_k(\tilde{t})) = \frac{0.18}{\left[l_k(\tilde{t}) + \Gamma G \mu \tilde{t}\right]^{5/2} \tilde{t}^{3/2}}.$$

### Cosmic archeology, GW spectral shapes

Amplitude sensitivity

Standard Cosmology (w=1/3)

Fundamental mode (k=1):





Early Matter domination (w=0)

EPTA LISA ALIGO STI INIS GEV ID HZ ID HZ IDDHZ J (HZ)

Kination (w=1)

Standard cosmology

Black hole domination

Kination

Amplitude + spectral shape sensitivity

**Our attention** 

### Some non-standard spectrums

Cosmic strings with inflation dilution

Cui, Lewicki, Morrissey, PRL, 2020



#### Melting cosmic strings

#### Emond, Ramazanov, Samanta (2108.05377)



### GW spectral features as a probe of SHDM



### A more rigorous parameter space



# Towards a testable theory of matter

Samanta & Urban, upcoming

### Keep in mind that we are dealing with a particle DM candidate

A simple sterile **three (like any other fermion generation)** Majorana fermion extension of the SM models solves three problems 1) N1-> DM matter 2) N2, N3 baryogenesis via leptogenesis.

Lepton number violation at a high scale,  $VEV_{U(1)}$ U(1) breaking=> DM mass + cosmic strings (gravitational) + LNV Baryogenesis



# Future improvement

1) We did not consider black hole-string network that could provide spectral distortion. (Vilenkin et al , 2018)

Potential GWs from black hole density perturbation (Papanikolaou, 2020)

### Summary

Gravitational Waves could be potential probe of High scale physics which otherwise cannot be probed e.g., in colliders.

I discussed a way to probe Super heavy Dark Matter with GWs

A characteristic spectral features along with bounded GW amplitudes Could be a smoking gun signal of SHDM.

We are now constructing a more general scenario where GW detectors will confront the origin of the matter content of universe.