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Distribution of galaxies usually studied with the 3D galaxy Fourier PS: 
Fourier mode of the 3D separation between pairs of galaxies in the sky at 

a given redshift: 

𝑃𝑔𝑔 𝑘, ҧ𝑧 = 𝑏( ҧ𝑧)2 𝐷2( ҧ𝑧) 𝑃𝑙𝑖𝑛(𝑘) (approximation; leading order)

What is galaxy number counts or galaxy 
clustering?



What are the redshift-space distortions (RSD)?

• The background galaxies recede: expanding universe 

• Galaxies also have their own peculiar velocities whose contributions are 
added to the main component of cosmological recession

• Result: Distribution of the galaxies in the redshift space is squashed and 
deformed : Kaiser effect (linear) & FoG (non-linear)  

𝑃𝑔𝑔 𝑘, ҧ𝑧 = [𝑏 ҧ𝑧 + 𝑓 ҧ𝑧 𝜇2]2 𝐷2( ҧ𝑧) 𝑃𝑙𝑖𝑛(𝑘) [Kaiser effect]

with  𝑓 ҧ𝑧 = −𝑑 𝑙𝑛𝐷( ҧ𝑧)/𝑑 𝑙𝑛(1 + ҧ𝑧) and  𝜇 = ො𝒓 ⋅ 𝒌/𝑘,   𝑘 = |𝒌|



• Natural tool and a direct observable (just measuring redshifts and angles); 
No Alcock-Paczynski correction 

• Accounts for cosmic evolution

• Wide angle effects included

• Lensing is naturally included

• Tomography between different redshift shells is possible 

Why to use the harmonic space PS instead of the galaxy Fourier 
PS?
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We can introduce the following derived quantities

𝑏𝜎8 𝑧 ≔ 𝑏 𝑧 𝐷 𝑧 𝜎8
f𝜎8 𝑧 ≔ 𝑓 𝑧 𝐷 𝑧 𝜎8

where 𝜎8 the r.m.s variance of clustering in spheres of radius 
8ℎ−1Mpc

Terms 𝑏𝜎8 𝑧 and f𝜎8 𝑧 can be factorised out of the integral for 
almost arbitrarily narrow redshift bins (possible in galaxy surveys with 

spectroscopic redshift accuracy). f𝜎8 𝑧 is a good probe to discriminate 
between different Dark Energy models. 
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Let’s measure it with BOSS data



BOSS DR12 spectroscopic survey

• Apache Point 
Observatory (APO): 
2.5m telescope for 5 yr
(2009-2014)

• Part of SDSS-III project: 
Baryon Oscillation 
Spectroscopic Survey

• About 10,000 sq.deg

• Two LRG subsamples: 
LOWZ and CMASS

• About 106galaxies in 
total



LOWZ                    CMASS

|FULL/APPROX.-1| X 100%



• Restrict analysis to 
strictly linear scales,

𝑘𝑚𝑎𝑥 = 0.1 ℎ M𝑝𝑐−1 ,

ℓ𝑚𝑎𝑥
𝑖 = 𝑘𝑚𝑎𝑥𝑟( ҧ𝑧𝑖)

• Minimum multipole 
resolved, ℓ𝑚𝑖𝑛 =

𝜋

2𝑓𝑠𝑘𝑦



• Galaxy catalogues public from BOSS collaboration

• Random catalogues are also available; 50 times denser than galaxy 
catalogues, taking into account: 

1. Completeness masks (extent of complete observations)
2. Veto masks (various observational effects)

• Can be used to build binary angular masks
• 𝑁𝑠𝑖𝑑𝑒 = 1024 using HEALPix

• Construct galaxy overdensity maps as 

𝛿𝑔
𝑝
= (𝑛𝑔

𝑝
−ത𝑛𝑔)/ ത𝑛𝑔

with 𝑛𝑔
𝑝

the number of weighted galaxies in a given pixel 𝑝

and ത𝑛𝑔 the mean number of weighted galaxies per pixel

Construct the galaxy overdensity maps



𝑓𝑠𝑘𝑦 = 0.2081 for LOWZ

𝑓𝑠𝑘𝑦 = 0.2416 for CMASS

A common ℓ𝑚𝑖𝑛 ≈ 7



Pseudo-𝑪ℓ approach & mask effects

• Project the observed field onto the celestial sphere

• Decompose it to spherical harmonics

• Analyse statistically the coefficients of the decomposition
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• The mask introduces coupling between different modes: Measured field is 
related to the unmasked field
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• A way to overcome this is with the forward modelling; convolve the coupling 
matrix with the theory spectra (usually time consuming)

• Another is to invert the coupling matrix and deconvolve it from the data; Direct 
inversion impossible since matrix becomes singular; A solution is to introduce 

bandpowers (pymaster package)

Let 𝑠 a set of 8 multipoles with weights 𝑤𝑠
ℓ, and σℓ∈𝑠𝑤𝑠

ℓ = 1



The coupled pseudo-𝐶ℓ in 𝑠 bandpower:
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Thus assuming the true power spectrum is a stepwise function related to 
bandpowers:
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Then an unbiased estimator can be derived:
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The theory spectra should be binned accordingly
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Construct the Gaussian likelihood

𝜒2 𝜽 = 𝒅 − 𝒕 𝜽 𝑇 𝓒−1 𝒅 − 𝒕 𝜽

with 𝒅 = {𝐵𝑖𝑗,𝑠
𝑔𝑔
},   𝒕(𝜽) = {𝐵𝑖𝑗,𝑠

𝑔𝑔,𝑡ℎ
(𝜽)} and 𝜽 = {𝑏𝜎8

𝑖 , 𝑓𝜎8
𝑖}

For the theory spectra  we assume a ΛCDM fiducial cosmology as from 
Planck 2016

We will put constraints on the parameter set 𝜽 using three different 
approaches to estimate the data covariance matrix 𝓒



Gaussian Covariance: diagonal in multipole space 
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PolSpice Covariance: accounting for coupling due to the 
mask

𝓒ss′ =𝓜𝑠𝑠′
−1𝓥𝑠𝑠′ 𝓜−1

𝑠𝑠′
𝑇

with  𝓥𝑠𝑠′ =
2𝒅𝒔𝒅𝒔′𝓜𝑠𝑠′

2𝑠′+1

and 𝒅𝒔 the data vector in bandpower 𝑠



Mocks Covariance
• Realistic way to estimate covariances is with data simulations

• BOSS offers simulated galaxy catalogues with PATCHY and QPM mocks

1. Constructed with a fixed cosmological model

2. Include various observational and systematics effects

• Due to their different redshift ranges, for LOWZ we use QPM mocks (z>1.5) 
while for CMASS the PATCHY ones (0.2<z<0.75)

• A further test to validate our analysis by using different mocks for each 
sample
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Modify the likelihood:

• The inverse of the simulated covariance matrix is not an unbiased estimator of the true 
covariance

𝓒−1 →
Nm−Nd−2

Nm−2
𝓒−1and keep the Gaussian likelihood, OR

• Replace the Gaussian likelihood with a t-Student

𝓛 ∝ 1 +
𝜒2

𝑁𝑚

−𝑁𝑚/2

and normalising with 
Γ 𝑁𝑚/2 det 𝓒 −1/2

𝜋 𝑁𝑚−1
𝑁𝑑/2−Γ[(𝑁𝑚−𝑁𝑑)/2]

assuming 𝑁𝑚 > 𝑁𝑑

Both methods equivalent 



Results: sampling with emcee, equal bin correlations only



Consistency checks: Replacing data vectors with mock 
data vectors



Consistency checks: 1) Different fiducial cosmology (change 
parameters at the 95% C.L of the Planck best-fit values), 2) 

Single bin estimation, 3) Include cross-bin correlations in the 
covariance



Consistency checks: Residual distribution
• Diagonalise the covariance matrix:

𝓒 = 𝓠𝓚𝓠−1

with 𝓠 the eigenvector matrix, and 𝓚 the 
diagonal eigenvalue matrix as from 𝓒

• Now the residual reads:
𝑅 = 𝓞−1𝓠−1[𝒅 − 𝒕(𝜽𝒃𝒆𝒔𝒕−𝒇𝒊𝒕)]

and 𝓞 = 𝑑𝑖𝑎𝑔 𝓚𝛼𝛼

• If residuals follow the normal 
distribution 𝜇 = 0, 𝜎 = 1 then the 

model is the ‘true’ one or the data are 
not good enough to show model 

preference, otherwise reject the model

• KS-tests accept null hypothesis



Conclusions
• Novel method to put constraints on the amplitude of the galaxy 
clustering b𝜎8 and the growth rate 𝑓𝜎8 using the harmonic space 

(angular) PS.

• Test it against synthetic data and simulations using the BOSS DR12 
galaxy subsamples LOWZ and CMASS

• Take into account observational and mask effects in a pseudo-𝐶ℓ
approach

• Construct data covariance with three different implementations 
(Gaussian, PolSpice, Mocks) yielding consistent results

• Considerable independence from the theory model; passes 
successfully a series of sanity and systematics tests

• Findings agree very well with literature

• Potential of improving constraints with forthcoming datasets (Euclid, 
SKA,..) to shed light on the physics of the history of the Universe



Thank you for your attention!
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