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Main Message

The Universe is magnetised, B everywhere!

Yet, we know neither the distribution and magnitude nor the origin of
this magnetisation

DM may interact with these magnetic fields.

One can use PMF to create (at least a part) of DM non-thermally
through an inverse phase transition

If a part of DM originated from inverse phase transition, there is a
statistically anisotropic isocurvature mode

This mode may be observed, even if B < 107! G !
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Magnetic fields around us

BEarth ~ 1 G

1G=10"%T = 1.95 x 10720 GeV?
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B = —u%
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For spatially-flat Friedmann universe in conformal coordinates

ds* = azrjﬂydx”dx”
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at Hydrogen recombination. This region is denoted by the
golden rectangle marked by “MW” (for Milky Way). Big bang
Korochkin et. al. (2020) nucleosynthesis (BBN) constrains By < 107° G on all scales,
while other observations roughly constrain By < 1077 G on
Mpc to Gpc scales. Blazar spectral measurements place a
lower bound ~ 107 G for A in the Mpc to Gpc range, or in-
stead a lower bound of ~ 10™'° G on kpc scales, and assumes
that plasma instabilities do not play a role. Magnetic helicity
measurements are uncertain but, if confirmed, would lie in
the region of the pink rectangle. If the cosmological magnetic
field is scale invariant, as in some inflationary models, and
also passes through the golden rectangle, it would correspond
to the horizontal dotted line and is pressured by several con-
straints. If the cosmological magnetic field has a blue k* or
k* spectrum as might be expected from the EWPT, it may
correspond to a shape like the dashed curve. This constraint
plot is meant to be schematic as there is considerable uncer-
tainty in the numbers and also the caveats mentioned in the
text. For example, By may be below the blazar bound shown
by the green line at A ~ Mpc since small scale (kpc) magnetic
fields can instead explain the absence of blazar halos.
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In the minimum Mesz (t) = 2 . (//tz(t) — Mz)

M.

Mz

<1

Adiabatically tracing the minimum

Adiabaticity is definitely violated when M ., = 0 i.e. when p. ~ M !

At this point one cannot trace the minimum as y,,.. = s diverges!
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Resulting Energy Density

adiabaticity is violated at y ~ M , as Meff ~ (), then if M > H. the field starts to oscillate with amplitude

1/3 1/3
(M%) 7 || cHMA
Ne = ~
\/ 24 H, \/ 24
dp’(1)
where we assume cosmological evolution —r KH 2 t
o (1)

the field behaves as DM

Mg (a* Yk M HYP (a* ?
A =— a(t)) = 1) a(t))

for the model of the paper k = 4
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* only for normal isocurvature without statistical anisotropy
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For S6B/B ~ 107> thefractionis f=~0.2 to 0.3

£<(0.2 10 0.3)

For 6B/B=~1 thefractionis f<107°



When does it work?

e.g. M=0.5TeV

A=04-10"*GeV
=107t
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Figure 1: The exclusion plot shows allowed values (white region) for the mass M of the
field y and the self-interaction coupling constant A. The other parameters, the reheating
temperature 7T,.,, the DM fraction f defined by Eq. (35), and the present day magnetic to
radiation energy density ratio rg(to) defined by Eq. (31), are set to the values shown in the
plot. The number of ultra-relativistic degrees of freedom is fixed to g, ,en = g.(T%) = 10%.
For values of the mass M and the coupling constant A along the solid orange line, the rest
of DM is made of particles y produced through the freeze-in mechanism.

_PB
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Freeze-in
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Figure 2: The exclusion plot shows allowed values (white region) of the DM fraction f
defined by Eq. (35) and the present day magnetic to radiation energy density ratio rp(tg)
defined by Eq. (31). The other parameters, the reheating temperature 7)., the mass M of
the field y, and the self-interaction coupling constant A, are set to the values shown in the
plot. The number of ultra-relativistic degrees of freedom is fixed to g, ,.n = g.(T%) = 10
For f and rp(ty) taking values along the solid orange line, the rest of DM is made of particles
x produced through the freeze-in mechanism.



