Image credit: Hubble telescope

Asymmetric Correlation Functions

Øyvind Christiansen PhD fellow, Institute of Theoretical Astrophysics, Oslo Iceland Liechtenstein Norway grants

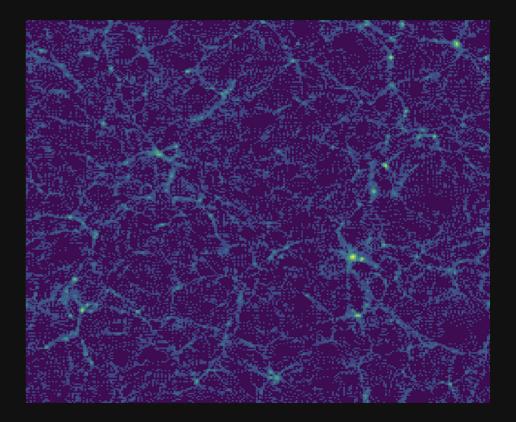
Beyond LCDM

Structure growth (LCDM)

Inflation seeds a stochastic field

$$P_{\mathcal{R}}(oldsymbol{k}) = rac{2\pi^2}{k^3} \mathcal{A}_s(k\eta_0)^{n_s-1} \ , \ \left(\mathcal{R} = -rac{aH}{ar{\phi}'}\delta\phi
ight)$$

- The perturbations then evolve deterministically according to currently known physical laws.
- These two assumptions yield predictions for the properties of the observed density fields.



Correlation Functions

• A stochastic distribution can be inferred from a sample through its moments

$$\langle X^n \rangle = \int P(X) X^n dX$$

• A stochastic field is defined on a space of points, where each point has a degree of freedom that is sampled from the distribution. The points may be non-trivially related; Their relationship can be inferred using autocorrelation functions of the field

$$\langle X(\vec{x})X(\vec{x}+\vec{d})\rangle \equiv \xi(\vec{d}) = \int \frac{d^n x}{V^{(n)}} X(\vec{x})X(\vec{x}+\vec{d})$$

 In our case, physics provides several tracers of the stochastic field, whose relations contain information about the physics that acts on on them. We can quantify their statistical relationship using cross-correlation functions

$$\langle Y(\vec{x})Z(\vec{x}+\vec{d})\rangle \equiv \xi(\vec{d}) = \int \frac{d^n x}{V^{(n)}} Y(\vec{x})Z(\vec{x}+\vec{d})$$

Correlation Functions

• A Gaussian random field (GRF) has each point sampled from a Gaussian distribution. The points may be correlated. We can picture all the points as an infinite-dimensional vector

$$P(\vec{X}) = \frac{\exp\left(-\frac{1}{2}(\vec{X} - \vec{m})^T C^{-1}(\vec{x} - \vec{m})\right)}{(2\pi)^{N/2} (\det C)^{1/2}}$$

- In the event of a GRF, we can uniquely determine it from its two first moments, or equivalently, from the mean vector and correlation matrix.
- Problem of tiny sample-size at each point is answered by cosmological principle and assumption of ergodicity.

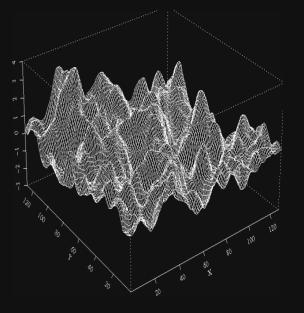


Image credit: Ben Kedem, Maryland university

Survey Distortions

 In LCDM perturbation theory, we can relate the dark matter density field to the primordial curvature perturbations whose distribution we know from inflation. In Fourier space

$$D(k,\eta) = \mathcal{F}(\delta(x,\eta)) = -\frac{2}{3\Omega_m} (\frac{k}{\mathcal{H}_{\prime}})^2 D(a) T(k) \sqrt{P_{\mathcal{R}}}$$

- Furthermore, using for example the Press-Schechter formalism, we can relate the number densities of non-linear structure, like halos or galaxies, to that of the dark matter density field. At first order $\delta_q = b\delta_{cdm}$
- Galaxy/halo counts can be done in satellite/telescope surveys. However there are complications in making the correct counts owing to survey volume distortions, due to among other propagation effects [Yoo et al. 2012, Bonvin and Durrer 2012].

Survey Distortions

• The Doppler effect changes the distance one would infer for the galaxy when one uses the redshift-distance relation.

Normally $r^{(c)} = \int \frac{cda}{a^2 H}$ and $a = \frac{1}{1+z}$, and we measure z from spectrography. Now, $a = \frac{\lambda_{emit}}{\lambda_{observ}} = \frac{\lambda_0(1+\vec{v}_s\cdot\hat{n})}{\lambda_0(1+z)(1+\vec{v}_O\cdot\hat{n})} \simeq \frac{1}{1+z} (1+(\vec{v}_S-\vec{v}_O)\cdot\hat{n})$

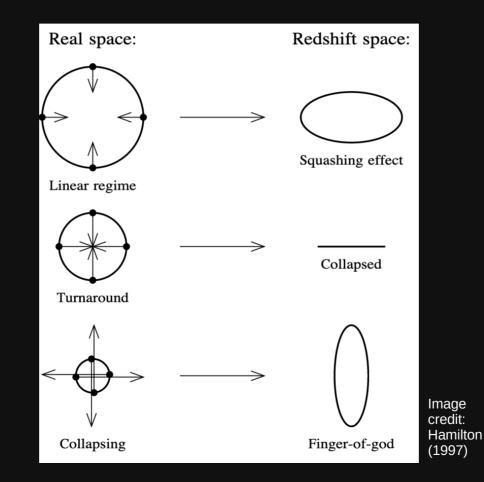
• This translates to a distortion in the overdensity

$$\Delta^{std} = b\delta - \frac{1}{\mathcal{H}}\partial_r(\vec{v}\cdot\hat{n})$$

• If we go to Fourier space, we recover the famous Kaiser formula [Kaiser 1987] (note angular dependency)

$$P_{XY}(k) = \langle \Delta_X \Delta_Y \rangle = P_{\delta\delta}(k)(b_X + f\mu^2)(b_Y + f\mu^2)$$

Survey Distortions



Legendre Projection

- Natural function basis to separate different physical effects, since different terms derived by similar method to the above comes with different angular dependencies.
- Application together with cleverly chosen tracers for cross-correlation enhances our ability to resolve degeneracies of different effects.
- In the small-angle approximation $\cos \phi \simeq \mu$

$$\operatorname{Proj}_{\operatorname{Legendre}}(f(x,\mu)) = \frac{(2l+1)}{2} \int_{-1}^{1} d\mu f(x,\mu) \mathcal{P}_{l}(\mu)$$

• Odd multipole contributions? [Bonvin et al. 2014]

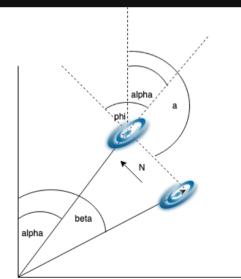


Image credit: Bonvin et al 2014

$$\Delta^{(rel)} \supset \mathcal{H}^{-1} \partial_r \psi$$

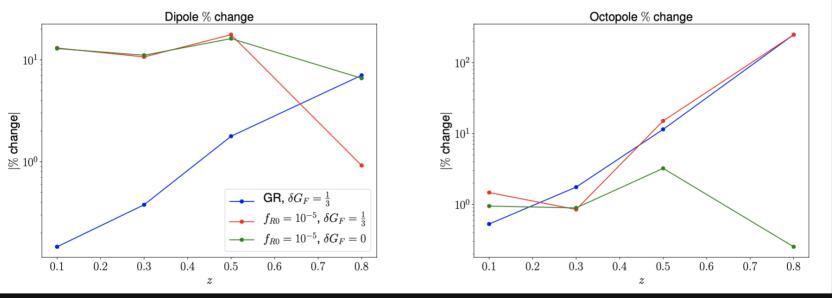
$$\Delta^{(rel)} = \mathcal{H}^{-1}(\partial_r \psi + \dot{\boldsymbol{v}} \cdot \hat{\boldsymbol{n}}) - \left[\frac{\dot{\mathcal{H}}}{\mathcal{H}^2} + \frac{2}{r\mathcal{H}} - 1 + 5s\left(1 - \frac{1}{r\mathcal{H}}\right)\right]\boldsymbol{v} \cdot \hat{\boldsymbol{n}}$$

$$\Delta^{\text{lens}} = (5s - 2) \int_0^r dr' r' \left(\frac{r - r'}{2r}\right)$$
$$\Delta^{\text{AP}} = (\partial_r - \partial_\eta) \left[\sum_{i \neq \text{AP}} \Delta^{(i)}\right] \frac{dr}{d\vec{\Theta}} \delta\vec{\Theta}$$

$$\Delta = \sum \Delta^{(i)}$$

$$\partial_r \Psi \to (1 + \delta G) \ \partial_r \Psi,$$

$$\Delta^{\mathcal{F}}(z, \hat{\mathbf{n}}) = \zeta \left[rac{\dot{\mathbf{v}} \cdot \hat{\mathbf{n}}}{\mathcal{H}} + \mathbf{v} \cdot \hat{\mathbf{n}}
ight]$$



Kodwani & Desmond (2019)

Effects of Beyond LCDM

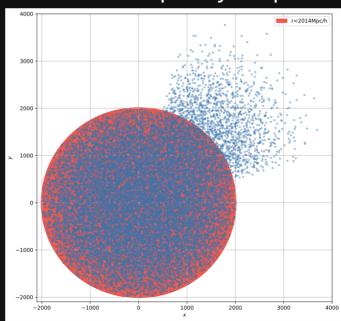
- Since the odd multipoles seem sensitive to relativistic corrections, we might ask whether they would be to gravity modifications as well.
 - \rightarrow Equivalence principle violations/screening

[Bonvin and Fleury 2018, Kodwani and Desmond 2019]

- → Enhanced/suppressed clustering
- \rightarrow Propagation effects
- \rightarrow Other survey volume distortions
- Unique and clean signature? What are optimal tracers to cross-correlate?

Search for signatures in simulations

- Previous studies [Breton et al. 2019, Beutler and Dio 2020, Guandalin et al. 2021]
- Gevolution is a good choice for modelling of relativistic effects.
- Extracting observables on the lightcone is conceptually simplest as we are interested in distortions on the lightcone.
- We consider halos at first.

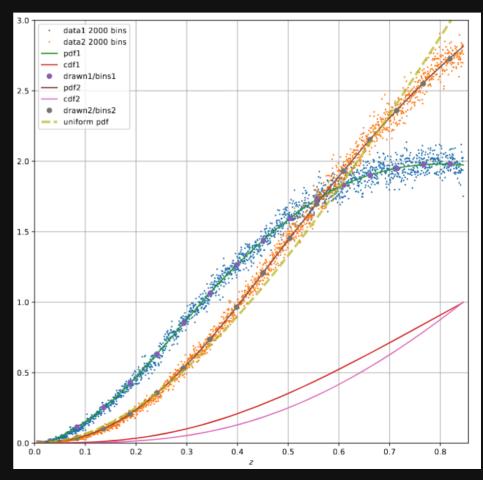


Constructing a random catalog

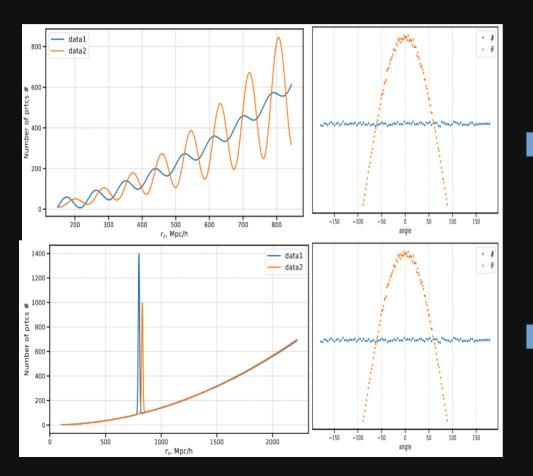
Landay-Szalay estimator

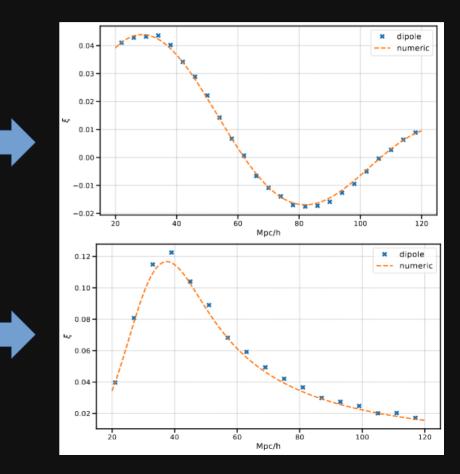
$$\xi_{LS} = \frac{\langle (D_1 - R_1)(D_2 - R_2) \rangle}{\langle R_1 R_2 \rangle}$$

- Uniform distribution?
- Account for halo number evolution?



Artificial Datasets





Summary

- Inflation provides us with stochastic field. •
- We can extract information through moments of tracers. ۲
- Tracers are imprinted by physics. •
- Estimators are distorted by physics.

 \rightarrow Hopefully we can knead the data in a way to glean new physics and resolve all degeneracies.

- Towards this aim we may ۰
 - \rightarrow Choose different cross-correlations

 - \rightarrow Vary how we model our random sets

- \rightarrow Project onto different functional bases
- \rightarrow Consider different statistical moments \rightarrow Subdivide and filter our data as we see fit
 - \rightarrow Weighted estimators

Brought to you by

